End-to-end Automated Drum Transcription

PhD proposal at EDITE doctoral school

Supervisor: Florent Jacquemard

- florent.jacquemard@inria.fr
- https://jacquema.gitlabpages.inria.fr

Laboratory: INRIA Paris, Action Exploratoire Codex

The goal of Automatic Music Transcription (AMT) [1] is to convert the performance of a musician into music notation - somehow the analogous of speech-to-text in Natural Language Processing. It is considered to be one of the oldest and most challenging research problems in the field of Music Information Retrieval.

The case of Drum Transcription (DT) is very particular as it deals with pitchless instruments and specific notations, and has been the source of many MIR studies, see [2] for a survey. Most of these work focus on computational methods for the detection of drum sound events from acoustic signals, and the extraction of low-level features such as an instrument class and an onset time (peak picking). Very few however have addressed the task of the generation of readable music (rhythmic) notation from the above features, a step crucial in a musical context and far from being trivial.

This PhD proposal is concerned with the later problem, and more precisely, with:

1. the study of Language Models (LM) embedding some high-level musical information needed for the generation of quality music score. One should in particular consider hierarchies of drum events inducing consistent temporal placements amenable to rhythm notations easy to read for a trained drummer; see [3] for related tree structured models based on formal language theory, that we are developing in the context of more general purpose AMT tools.

2. the integration of these LM with state of the art Acoustic Models (AM) and methods for the above signal processing tasks. That requires taking into account the musical context and high level musical information of LM on the top of the above low level acoustic features.

Furthermore, some experiments will be conducted on the base of public datasets, in order to evaluate the integrated approach. They should cover some cases of complex overlapping rhythmic patterns.

Beyond model integration, it will also be interesting to study how the use of LM can improve the results of AM see [2], and pave the way to fully automated drum score generation and the general problem of end-to-end AMT.

References
