Rewriting & Music

11th International School on Rewriting
Paris, MINES ParisTech, 1-6 July 2019

florent.jacquemard@inria.fr

; ircam
&1;’}1 e cham == Centre

Pompidou

part 0. Examples in Musical Creation
at different Representation Levels

part I. Sequential Music Representations
Melodic , Computational Musicology
Weighted String Rewriting Systems & Edit Distances

part 2. Tree-structured Music Representations
Music Notation Processing,
Term Rewriting Systems & Weighted Tree Automata

(click on a part to jump to its first slide)

Part |

Automated Music Analysis
& Computational Musicology

Sequential Music Representations
Melodic Similarity Measures

Weighted String Rewriting
String Edit Distances

with
Algomus (Mathieu Giraud, Lille 1)
Vertigo team (Philippe Rigaux, CNAM)
IReMus (Christophe Guillotel-Nothmann, CNRS)

Similarity in Music
& Applications

Similarity in Bases of Audio Recordings

applications in audio databases (streaming platforms)

processing of audio signal - automated classification (genre, mood, rhythm...)
(low-level content features) - version identification (covers songs, opus retrieval)
- recommendation

- detection of plagiarism, apocrypha

- search and querying (query by humming)

Music Information Retrieval

‘ Create Discover
playlist now
Discover playlist

_ay Your music 13
> library ¢ Your frisnds N
- €7y listoning " Your recent

habits - listening
) habits

/'/I/I

Use these controls,_ / Uundverllg

mlh similar

1astes to you

o set how much
influence each
factor ehould have
on your Discover
playlist

ML Mixer Recommender System

Similarity in Music Score Databases

processing of symbolic music
representations
(high-level content description)

- Computational Musicology (corpora
studies)

- Music Education, Composition

- Libraries

http://neuma.huma-num.fr
database of digital music scores
in MusicXML and MEI formats
rare corpora (preservation).
search and analysis tools for musicologists.

applications in music score databases

automated classification
version identification
plagiarism detection

search and retrieval
automation of music analysis
identification of structure

Vertigo team (CNAM, Cedric)
IReMus (Sorbonne U. CNRS)
BnF (French national library)

L T 1 e s
(A it ?

http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr
http://neuma.huma-num.fr

Computational Musicology (Digital Humanities)

Algomus (CRIStAL Lille, MIS Amiens)
Emmanuel Leguy, Richard Groult, Nicolas Guiomard-Kagan, Florence Levé, Mathieu Giraud

Computational analysis of written music:
MIR on digital score corpora

caz

i “ean 8 - L]
] ez | ész s
: ,,p\—.. .+ . 5
O epesmen W toMIN ‘o i , creon wrounee wsve Epeies! wen speaion_ pucos
/ row ¥ fom—
3UH%JJ i3S SER =5 S

V] = = = Well-Tempered Clavier
fire ﬁ selid g T, 3
{g’ Ereiet, = | = | vol. 1, fugue #2

© Algomus

23N

1= S IR

automated formal analysis of music scores,
inference of high-level structure in scores, segmentation
identification of high-level descriptors (cadences, form...)
using melodic similarity measures to detect similar segments, repetitions...

https://youtu.be/FRirqB369sM
http://www.algomus.fr/fugues/bach/index.html

Visualizing similarities (global structure)

turbulence.org/Works/song
Martin Wattenberg

R

A A A A

folk song Clementine

[;/ A /;K‘MW xugm}ﬁ \ AN

Goldberg variations

http://turbulence.org/Works/song

Colon Nancarrow

midi.org

http://midi.org

Piano-Roll Representation

=
s ga s ._1
lixe e B S
pitch
(0..255) :
|
= - . |
e s s g s s s E—
- L= - - .| - .-
n - . 1 -_ = — — L=} - R
- = - - | — x | = = — -
g - -
-— 1 l: = -.
- -
‘ : ‘ | time (beat)
I monophonic part | polyphonic part \

1note ata time

source : Meinard Miiller: Fundamentals of Music Processing

Symbolic Music Representations (monophony)

Representation by 1D strings (monophonic melodies)
document and queries are sequences of symbols made of :
- pitch (or rest),
- duration (in nb of beats) or onset

(the end of a note is the start of the next)

» search for
with standard text searchlng algorithms: Knuth-Morris-Pratt, Boyer-Moore

» search for
with similarity measures : edit dista

> and by tapping

Symbolic Music Representations (polyphony)

Representations by points in a 2D space (polyphonic scores)
document and queries are finite sets of events made of:
onset time,
pitch,
duration.

Geometric Methods
> : query c document (modulo pitch shift of query)

» : document is superset of subset of the query

» set comparison using transportation distances (EMD)
for comparing sets

Approximate String Matching
&
Edit-Distance Computation

Edit Distance

measuring the similarity of sequences of symbols
applied to

- spell correction
- plagiarism detection
- file diff

- approximate search in documents
« Information Extraction

. (DNA or protein sequences)

» Speech Recognition

Algorithms on sequences

Dan Gusfield

Algorithms on strings, trees and sequences
Computer Science and Computer Biology
Cambridge University Press

Chapters on Approximate String Matching
+ algorithms
+ discussion on biological problems

In this presentation:
+ insight of some algorithms in SRS settings
+ discussion on musical relevance & extensions

String Similarity

What is the difference between:
cat and cats

cat and cut
sunday and saturday

intention and execution

ANl A

vintner and writers

String Similarity

What is the difference between:
cat and cats 1 letter

cat and cut
sunday and saturday

Sl

intention and execution
5. vintner and writers

hint: align the strings by padding with _
in order to minimize non-matching slots.

C

C

String Similarity

What is the difference between:
cat and cats 1 letter

cat and cut 1 letter

sunday and saturday

Sl

intention and execution

5. vintner and writers

hint: align the strings by padding with _
in order to minimize non-matching slots.

c a t ¢ t
1. 2.
c a ¢t ¢ t

String Similarity

What is the difference between:

1. cat and cats 1 letter
2. cat and cut 1 letter
3. sunday and saturday 3

4. intention and execution

5. vintner and writers

hint: align the strings by padding with _
in order to minimize non-matching slots.

t
1. © 2. ¢
C ¢ t
s u d y

String Similarity

What is the difference between:

1. cat and cats 1 letter
2. cat and cut 1 letter
3. sunday and saturday 3
4. intention and execution 5

5. vintner and writers

hint: align the strings by padding with _
in order to minimize non-matching slots.

t t
1. © @ 2. ¢
c a ¢t ¢ t
s d
3 ° v
s u d y
i n

String Similarity

What is the difference between:

1. cat and cats 1 letter
2. cat and cut 1 letter
3. sunday and saturday 3
4. intention and execution 5
5. vintner and writers 5

hint: align the strings by padding with _
in order to minimize non-matching slots.

t t
1. © @ 2. ¢
c a ¢t ¢ t
s d
3. b v
s u d y
4 * .
e i o
i e
5.

Edition Primitives

The SRS R over a finite alphabet X is defined as

{e>b|beX}
U {a—elack}
U {a—bla,be X a#b}

Ro

Rewriting step (u,v € *):
UV U bv
uav R—U> uUv

uav o u bv
<0

Ro is equivalent to the following TRS over ¥ W {1}
(symbols of X are unary, L constant):
Ro = { x =bx)|beX}
U {alx) =z |aeX}
U {a(z) = b(x) | a,b e X, a+#b}

Rewriting problem:

given s,t € X*
does it hold that s RL(,> t?

It is true for any s,t with R, because of rules Insertion and Deletion!

Quantitative Rewriting problem:
given s,t € X*

what is the minimal length of a rewrite sequence s RL(Q t7

= how much 2 strings differ = edit-distance.

For s,t € ¥*, the Levenshtein distance LD(s,t) is the minimal length of
a rewrite sequence s %{Q t.

Edit Distance problem:
given s, t € X*

compute LD (s, t) along with a minimal s %0) t.

Example: LD(vintner,writers) =5

. R . I . D .
vintner T(, wintner W wrintner R—U> writner

D . I .
—— WwWriter —— writers
Ro RO

Is this sequence minimal?

We denote by ¥_ the extension of a finite alphabet ¥ with a new space
symbol _ ¢ 3.

A pair (s',t’) of strings over _is an alignment of the pair (s, t) of strings
over X if s’, t/ are obtained respectively from s and ¢ by insertion of space
symbols _ such that

e s’ and ¢’ have the same length,

e no position is labelled _ in both s" and ¢'.

Example: s’ = i t e

t = i t e

Alignements & Rewriting

Every alignment of (s,) defines exactly one rewrite sequence s RLM t.

Example:

R Ip b i

Converse?

Alignements & Rewriting

Non-overlapping rewriting sequence (left-right strategy):

rewritable

u vl

J
u v U

rewritable

where ¢ — r is a string rewriting rule (¢, € ¥*), and w, vy, vy € X%,

Every non-overlapping rewrite sequence s %0) t defines exactly one
alignment of (s, t), and vice-versa.

e insert _in s’ at positions of Insertion,

e insert _in ¢’ at positions of Deletion.

The converse also holds: Consider the pairs of letters from left-to-right.

Every rewrite sequence s %ﬁ t of minimal length has no overlap.

Every 2 overlapping rewrite steps with Ry can be converted into strictly
less rewrite steps (remember that Ry is " complete”).

WAV —o—y UbV oy UV | uav ——r ucv if a # c

AV = U Ry U LAV = UCY] §
uav L uov L) uav uav L> uav

AV = U Ry U AV 5= Uav

[R [
UV ——> UV —5—> UCv UV ——> UCv
Ro Ro Ro

uav L uov L) uv uav L uv

7 Ro) Ro) 7 Ro T
uv I—> uov L uv uv L> uv

" Ro) Ro) " Ro T

Hence, in order to compute LD(s,t),
t

s,
we can explore all alignments of (s, ¢) and find the best one.

But the number of alignements is in the lengths of s and t.

Dynamic Programming

Better solution:
let s=ay...am, andt=0b1...b, in 3*.

For1<i<m,1<j<n,letd;; =LD(ay...a;b...b;).
In particular, dy, , = LD(s,1).

doo =0
For 0 <i<m, 0<j <n,let o be the rewrite sequence
a...a; %0) by ...b; of minimal length (its length is d; ;).

By Observation 2, we can assume that o has no overlaps, and commute
its rewrite steps so that they are applied from

We consider the last (i.e. rightmost) rewrite step of o.

There are 4 cases.

Dynamic Programming

There are 4 cases for the last (i.e. rightmost) rewrite step of o:

Then dj’j =

Dynamic Programming

There are 4 cases for the last (i.e. rightmost) rewrite step of o:
1. a; —> bJ (i 7é bJ)
Then d;j =d;_1 j_1 + 1.

g 4)7%“ bj

Dynamic Programming

There are 4 cases for the last (i.e. rightmost) rewrite step of o:

L a; g5 bj (ai # b;)
Then d77_d1 177]+1

0

R
Thend;; =d;;—1+1.

()

Dynamic Programming

There are 4 cases for the last (i.e. rightmost) rewrite step of o:

1. (I—)I)J(,‘,?ébj)
Then dij =d;_1j_1 + 1.

2. E—)bj

)

R
Then (],J = d’i,.j—l + 1.

3. aZR—>S
0
Thend;; =d;—q1;+ 1.

Dynamic Programming

There are 4 cases for the last (i.e. rightmost) rewrite step of o:

1. (I—)I)J(,‘,?ébj)
Then dij =d;_1j_1 + 1.

2. E—)bj

)

R
Then (],J = d’i,.j—l + 1.

3. aZR—o>S

Thend;; =d;—q1;+ 1.

4. a; = b]
Then di,j = difl_’jfl.

Dynamic Programming

Summary:
do’g = 0
di1;1 + 1 } a; # bj
dij— 1
di; = min It N
di,—l,j + 1
di-1,j-1 | ai=1b

We can implement the function d using these equation and call d(m,n).

This top-down approach is very inefficient because of redundant recursive
calls.

Dynamic Programming

Better solution: (bottom-up approach):
fill a m x n matrix with the values of d(i, j),
starting with the upper left corner d(0,0).

An optimal rewrite sequence can be computed simultaneously, or by
traceback.

Time complexity: O(m.n)

Space complexity: O(m.n)

Optimization:
when it is not required to compute an optimal rewrite sequence:

Time complexity: O(LD(S, t). min(m, n))

Space complexity: O (min(LD(s,t), m,n))

~
3]
]
2
7]
3]
<]
-
I

5
6

6 6 6 6
T 7 7

7

414 4 4 4

6
7

traceback: we compute the matrix and in the same time add pointers
according to the operation(s) selected in min: - right for insertion - down
for deletion - diagonal for replace or match. following a path acc. to
these directions from (0,0) to (m, n) permit to reconstruct a rewrite
sequence. in time O(m + n).

Dynamic Programming

In general, the Dynamic Programming techniques consist in:

e divide the problem into subproblems
defining a recurrence relation

e store the computed values in a table.

Weighted Frameworks

We can be more general:
every rule £ — r of Ry is associated a non-zero 0l —r).

(WSRS)

Quantitative Rewriting problem:

quantitative given s,t € X*
reachability: what is the minimal weight of a rewrite sequence s %0) t

For more generality, weights could be defined in a semiring.
Mehryar Mohri

Semiring frameworks and algorithms for shortest-distance problems
Journal of Automata, Languages and Combinatorics 7(3) 2002

Distance with costs

Computation of D(s,t): The equations become:

doo = 0
d,l',l_jfl + 5((li — b]) ‘ a; 7é bj
1,,‘ i— (e — b;
dij = min Gij=1 + N(g 3)
b li—1,j + ()((Li — 5)
di—1,5-1 ‘ a; =b;j
It is correct provided that holds (to avoid overlaps):

Sl —s) <ol —r)+d(r—s)

Melodic Similarity

Melodic Similarity

Levenshtein Edit Distance
(minimal number of rewrite rules used to transform a string into another)

is relevant for

- text processing (spell correction...), and

- biological sequence comparison.

« For music analysis?

(monophonic) melody = sequence of symbols (with pitch, duration)
When computing melodic similarity as an edit-distance,

it is important to consider duration-preserving rewrite rules

- problem with insertion and deletion.

rhythm is defined by regular patterns ()
meter should be preserved.

e.g. : what happens if one adds a random beat in a waltz?

Mongeau-Sankoff Distance

Marcel Mongeau and David Sankoff
Comparison of musical sequences
Computers and the Humanities, 24(3):161-175, 1990

inspired by the notion of and (= rewritings of theme)

Comparison of musical sequences

Marcel Mongeau and David Sankoff
Comparison of musical sequences
Computers and the Humanities, 24(3):161-175, 1990

20

1993 96 97 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

Citations of the Mongeau-Sankoff algorithm throughout the years (data from semanticscholar)
Black bars represent papers presented at ISMIR (International Society for Music Information Retrieval Conference)

Extended Edit Distance

Esko Ukkonen
Algorithms for Approximate String Matching
Information and Control (64), 1985

Let R be an arbitrary SRS over ¥ = finite set of string rewriting rules of
the from ¢ — r with {,r e X*, L # r
(called editing operation set in [Ukkonen 85]).

Every rule £ — r € R is associated a weight value §(¢ — r) > 0.

For s,t € ¥*, Dr(s,t) is the minimal weight of a rewrite sequence s %% t;

by convention, Dx(s,t) = +oo if there is no such sequence.

Extended Edit Distance

lets=aj...amandt=by...b, in X% and, for 1 <i<m, 1<j5<n

dopo = 0
difl,jfl a; = bj
diepj—qt+ 0l =) 0<p<i
‘ 0<qg<y
dij; = min

(/,:ai,erl...ai
T‘:bj_(ﬁ_l...bj
{—reR

Does d(i, j) compute D(ay ...a;,b1...b;)7?

Restricted Edit Distance

For s,t € ¥*, D (s,t) is the minimal weight of a non-overlapping rewrite

. &3 .
sequence s —=— t;

by convention, D/ (s,t) = +oo0 if there is no such sequence.

For all s,t € %, Dr(s,t) < D% (s,1t).

It can be < (in cases of overlap, examples later)

For s =ay...a,, and t = by... 0, in X%, 1 <7< m, 1 <j <n,
di.j :D%(alal,blb])

Example Variations K. 265

Alignments between variations 3 and 7 by M. Duchesnes on Mozart's Ah vous dirai-je maman K. 265
(figure from the original article of Montgeau & Sankoff 1990)

Variation 3 is a ternary meter and variation 7 in a binary one, making note-by-note alignment difficult,
some steps rewrite one note into several.

https://youtu.be/DC-56bwFQbc

Mongeau-Sankoff Edit Distance

They consider SRS with rules of the following forms:

a — by...by a,by,...,bg €%
a...ap — b ai, ..., ap,b € X

deletion is a fragmentation with ¢ =0
insertion is a consolidation with p =0

replacement is a fragmentation with ¢ =1
(or consolidation with p = 1)

Mongeau-Sankoff Edit Distance

In this case the algorithm computing D%, is:

doo = 0
di,],jfl + 5((11 — bj) } a; 7& b]
del.,j + 5(&2 — E)
di i) b;

dij = min S + 0e=b)

' di—1,j-1 | ai=1b;

difl_’jfk + 5(al — bj,k+1 A bi) } 2<k<y
d,‘,,k"jfl + 5(a7;,g+1...a7;%bj) } 2</0<qg

Discrete Time Wrapping

4 Compressions

ﬂ: /I_I,.S[:_Im Expansion

Joseph B. Kruskal & Mark Libermann
The Symmetric Time-Warping Problem: from Continuous to Discrete
Time Warps, String Edits, and Macromolecules
The Theory and Practice of Sequence Comparison, CSLI Stanford 1999

Montgeau-Sankoff Edit Distance

elementary edit operations:

) , +
d with cost = compress substring — single char
* id = expanse char — substring
LAl S SE SIS Si——E===5
) PY PY
— ! f)
theme fos—%—1* f H t |
T T r

var. 7

Mozart K625

Example Variations K.265 (2)

Alignments between variations 3 and 7 by M. Duchesnes
on Mozart's Ah vous dirai-je maman K. 265

Rewrite sequences with overlaps.
All considered consolidations and fragmentations preserve the total duration.

This rewrite sequence involves
2 strict consolidation,

3 strict fragmentations,

3 other fragmentations,
6s/d/irules

\f Cl/"d
\\\ L’:S/,.

| total cost = 14 + 3.Waur.

Here the rewrite sequence contains
N\ only consolidations
\\

AN and fragmentations
\\\\\\ (11 rules, including 5 strict ones).

iéﬁ cre L_’_r e '_r_flg ﬂ—' mn_" total cost = 11 + 6.Waur.

Mongeau-Sankoff Edit Distance

Editdist. Dygla,e) =3 Editdist. Dog(x, =
Bestalig Dl (a.c) =3 Bestalig. D (x,2) =3
Bestalig. Dfyeg(a,¢) = 3 Best alig n‘_“ z

@:: \
g= =5 :IJTLT-‘? |

Edit dist. Dyger(a.c) = 2 Edit dist. Dygier(z, 2)

c et
o

Alig. Digo(a.€) =1+ wpen Alig. Dyyee (@, 2 .
0 n

Ué—o—)—a— \u—o—&a—i
L) IS

Mongeau-Sankoff Edit Distance

In general it is undecidable whether Dz (s,t) < +oo given s,t € ¥* and
R over ¥ with fragmentations and consolidations.
Encoding of the blank accepting problem for a Turing machine M.

Every transition of M is simulated by a combination of consolidation and

fragmentation, or insertion, deletion.

Mongeau-Sankoff Edit Distance

Dx(s,t) can be computed in some specific cases:
1. when R =Ry
2. when R contains only consolidations and deletions

3. when R contains only fragmentations and insertions

1. Dr, = Dp, with triangle inequality.

2. PTIME construction of a weighted automaton A% such that
AR(t) = Dr(s,t).

3. inverse rules

Weighted Automata Construction: Example

¥ ={i,t,u}

all replacements,
all insertions,
all deletions,

some consolidation and fragmentations.

8
1
o

l;
l:.

i t e 2y i ii Zy o401 2y id

i I oo B ot ot 2 e iii 2 i1 S ddd

t 2y i e By ouwou 2o ottt I ottt X gt

t =y u ttt =t ot 2ttt

u Ts i uu Tc . u T uu
T Tc xf

u — t uuu —— u u —— uuu

Weighted Automata Construction: Example

Le

Te D 2y

ttti tti

tutti tuti ' tui

utti - uti

Rewrite sub-graph of tutti (only deletion and consolidation steps)

Weighted Automata Construction: Example

qs
0 i,xg+xs =2 i,xg+xs =2 0
t,2q = 1 t,2q = 1
11717(1:1 u’xdzl

T =2g =Te=1

Mongeau-Sankoff Edit Distance

summary:

- sequential representation of monophonic melodies
computation of similarity

- Levenstein edit distance:
efficient computation but problem of relevance for melodic similarity

» Montgeau & Sankoff extension:
relevant musically (principle of theme - variation)
algorithm for computing alignments only
distance not computable
particular cases computable

diff tool for the comparison
of Music Score Files

Unix Diff

side-by-side comparison of 2 text files
identify differences
save in patch
merge files

anon
comments. ay@8eade217c2 (read-oaly)

sel?.window. run_command(‘hide_panel', {‘cancel':

def show(self, coments = True, drefts = True):
self.prepare(comments, drafts)

comnents

coments Naret

itens < 1]

self.view Unes Nong coments [2].coll
items.append({
‘caption't ['Add Draft Mere'l,
* coment '
‘on_over': self.cdeactivate_cor
‘on_select': lanbda itew: sublime.set_timec
H

quick_panel(

itens + [self.create_comment_menu_iten(conment, - -

on_canc self.cance

)

used in

- software development

- collaborative edition

- version control systems (git merge...)

= comments.py

commonts.py

self.window. run_conmand('hide_panel', {'cancel': T
self.clear_current_text() |

det- show{self, cowments = True, drafts = True):
comments - self.prepare(comments, drafts)

items - []

self.view lines EE and comnent s
1itens.append({
‘caption’: ['Add Draft Here'l,
! comme: coments | ¢
‘on_over': lanbda 1 self.deactivate_com
‘on_select': lanbda iten: sublime.set_timeo
h -
quick_panel(——
itens + Iself.create_comment_nenu_item(comnent,
n_cance1=5e1f. cancel

)

1f self.view_lines is not Nond and coments(8).collection.get draft st line(comments(8].get Line()) is None:
1t self.view_lines 1s not NonefEIENEINIINY and comments [@).collection.get_draft_at_line(comments[0].get_Line()) 1is None:

Changes: 38, Ignore CRILE. OFF, Ignore Whitespace: OF, Ignore Case: OF, Scparate Missing Blocks: OF, Edit Mode Avallable, Line 665, Column 74

Sublimemerge 2 for macOS

Longest Common Subsequence

used for diff of text files

informal objective:
given 2 text files (typically 2 versions of the same file)
identify the lines in common and the lines that differ

file A file B LetL; ;bethe longest subsequence common
to the firsti lines of fileA = Ay, ...,/ Am
a el and the first j lines of file B = By,..., B,
b a
c b
d X Vi =0,.m Lf.() =0
e
£ Z Vj=0.n Lo;=0
d € Vi=lL.mVj=l.n Ljj=1+Li_yj_|ifA;=5
Lij=max(Li_y j.L; j_1) otherwise

XML score files

for data exchange

> — -
f X3 b N] r) r 1 I 1 (v 4 | ——
pESESEemerss - S
PY)
<measure number="1"> <measure xml:id="m_sc_2" left="invis">
<attributes> <staff n=
<divisions>8</divisions> <ayer n="1">
<key> <beam>
<fifths>-1</fifths> <note xml:id="n_sc_6_0" pname="c" oct="5" dur="8" dots="1"/>
</key> <note xml:id="n_sc_7_0" "32"/>
<beats>2</beats> <note xml:id="n_sc_8_0" 32"/>
<beat-type>d</beat-type> </beam>
<staves>1</staves> <beam>
<clef number="1"> <note xml 8"/>
<sign>G</sign> <note xml:id="n_sc_10_0" pname="c" oct="5" dur="8"/>
<line>2</line> </beam>
<clef-octave-change>0</clef-octave-change> </layer>
</clef> </staff>
</attributes> </measure>
<note> <measure xml:id="m_sc_11">
<pitch> <staff n="1">
<step>C</step> <layer n="1">
<octave>5</octave> <beam>
</pitch> <note xml:id="n_sc_12_0" pname="c" oct="5" dur="16"/>
<duration>6</duration> <note xml:id="n_sc_13_0" pnam 16"/>
<voice>1</voice> </beam>
<typeseighth</type> <note xml:id="n_sc_14_0" pname="f" oct="5" dur="4"/>
<dot/> <rest xml:id="n_sc_15_0"
<stem>down</stem> <note xml:id="n_sc_16_0" 5" dur="16"/>
<beam number="1">begin</beam> </layer>
<notations/> </staff>
<note/> </measure>

MusicXML (Finale)
(1 note)

MEI (Verovio)
(2 bars)

XML formats for music score encoding are
expressive
verbose and

The same score can have many different XML encodings.

csq: it won't help to apply Unix diff directly to the XML (text) file

Christopher Antila, Jeffrey Trevino, Gabriel Weaver
A hierarchic diff algorithm for collaborative music document editing
TENOR 2017

Francesco Foscarin (PhD)
A diff Procedure for XML/MEI Music Score Files

score file comparison proceeds in 2 steps
(after some pre-processing)

XML/MEI bar seq. treeseq. | cs T diff list
— 3| VXML | | e |—2—p|treeblocks | Tree o | diftlis
file extract per bar # Edit
per bar Distance
canonical
bars in music files representation
are the analogous of of bars

lines in txt files (disambiguation)

Tree Representation of XML score content

(a) (b)

6

| S PPPPP 1 My JT7D intermediate representation of
the graphical content of a score
(with trees.
for

2 different XML encodings
of the same score elements
NiOREOREONGN4 N4 will have the same

tree representation.

1
1 ‘ It is a canonical representation:
1

(c)

Tree Edit Distance

edit primitives (on trees) # term rewrite rules

Il D(s,e) = sl

!

Die#)
)

D(u.s,d'(u').s') + 1
min{ D(a(u).s,u’.s’) + 1
D(s, s +D(u u') +d(a,a’)

where a(u),) are trees, s, s', u, u’ are sequences of trees
e is the empty sequence and

d(a,a) =0
d(a,a’) = 1if a # a’ are inner symbols

d(a,a’) = dist(a,d’) if a,a’ are constant symbols.

Kaizhong Zhang and Dennis Shasha
Simple fast algorithms for the editing distance between trees

Rameau Corpus

Evaluation of XML-MEI music score files diff tool

on a dataset produced by IReMus (Sorbonne U. CNRS)

from a corpus of Bibliothéque nationale de France BnF, Gallica
containing 21 ouvertures of Jean-Philippe Rameau.

We diff one page OMRized from the manuscripts, and its manual correction.
Displayed differences can be useful for a fine detection of OMR errors.

(*) OMR = Optical Music Recognition = Music OCR

project Giogoso between
Vertigo team (CNAM, Cedric)
IReMus (Sorbonne U. CNRS)
IRISA (Rennes)

BnF (French national library)

copyright

m Gallica

https://gallica.bnf.fr

Rameau Corpus

OMRized version Manual correction (ground truth)

Les surprises de amour Les surprises de I'amour

= S S=Sdn 4 | [ol
< =
= ” . ="l L
R = = 1 ==
; P by
MEbewwion € ME e CF
diff marks:
- insertion
« deletion

. (modification)

Summary of part |

. of monophonic melodies

for symbolic music analysis (musicology)

defined in SRS settings (rules insert, delete, replace)

quantitative reachability

efficient computation with Dynamic Programming

Melodic Similarity (rules fragmentation, consolidation)

notion of overlaps

« diff utility for Score File
computation
Term Rewriting

« structured representations of music
music notation processing (next lecture)

+ high-level ()
for audio Music Information Retrieval
(long term perspective in MIR community)

audio engineering community:

« perceived musical information which,
though its existence is agreed by listeners,
stubbornly refuses to be extracted
from audio signals in isolation »

(“glass ceiling” at about 70% accuracy
in the results achieved by audio processing alone)

Mozart, Symphony No. 40 in G minor, 2nd mvt., Andante

https://youtu.be/14YKwZ5yYxw

youtube channel smalin

http://www.apple.fr
https://youtu.be/14YKwZ5yYxw

