Rewriting & Music

11th International School on Rewriting Paris, MINES ParisTech, 1-6 July 2019

florent.jacquemard@inria.fr

part 0. (today)

part I. (today)

(click on a part to jump to its first slide)

Music Notation Processing, Transcription Term Rewriting Systems & Weighted Tree Automata

part 2. (tomorrow) Tree-structured Music Representations

Examples in Musical Creation

at different Representation Levels

Sequential Music Representations

Melodic Similarity, Computational Musicology Weighted String Rewriting Systems & Edit Distances

notated/symbolic domain

notated/symbolic domain

acoustic/physical domain & notated/symbolic domain

Part I

Automated Music Analysis & Computational Musicology

Sequential Music Representations Melodic Similarity Measures

Weighted String Rewriting String Edit Distances

with
Algomus (Mathieu Giraud, Lille I)
Vertigo team (Philippe Rigaux, CNAM)
IReMus (Christophe Guillotel-Nothmann, CNRS)

Similarity in Music

& Applications

Similarity in Bases of Audio Recordings

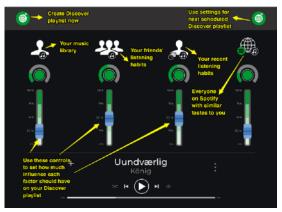
Audio Similarity

processing of audio signal (low-level content features)

Music Information Retrieval

applications in audio databases (streaming platforms)

- automated classification (genre, mood, rhythm...)
- version identification (covers songs, opus retrieval)
- recommendation
- detection of plagiarism, apocrypha
- search and querying (query by humming)



ML Mixer Recommender System

Similarity in Music Score Databases

Symbolic Similarity

processing of symbolic music representations (high-level content description)

- Computational Musicology (corpora studies)
- Music Education, Composition
- Libraries

http://neuma.huma-num.fr database of digital music scores in MusicXML and MEI formats rare corpora (preservation). search and analysis tools for musicologists.

applications in music score databases

- automated classification
- version identification
- plagiarism detection
- search and retrieval
- automation of music analysis identification of structure

Vertigo team (CNAM, Cedric)
IReMus (Sorbonne U. CNRS)
BnF (French national library)

Computational Musicology (Digital Humanities)

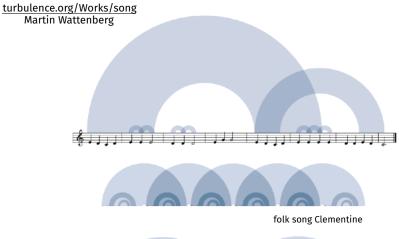
Algomus (CRIStAL Lille, MIS Amiens)

Emmanuel Leguy, Richard Groult, Nicolas Guiomard-Kagan, Florence Levé, Mathieu Giraud

Computational analysis of written music: MIR on digital score corpora

automated formal analysis of music scores, inference of high-level structure in scores, segmentation identification of high-level descriptors (cadences, form...) using melodic similarity measures to detect similar segments, repetitions...

Visualizing similarities (global structure)

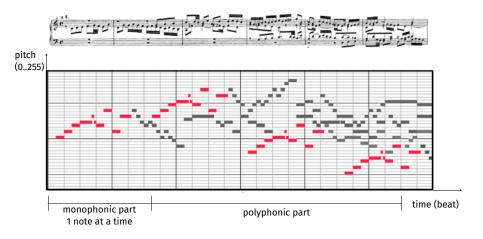


Piano-Roll Representation

Colon Nancarrow

midi.org

Piano-Roll Representation



Symbolic Music Representations (monophony)

Representation by 1D strings (monophonic melodies) document and queries are sequences of symbols made of:

- pitch (or rest),
- duration (in nb of beats) or onset (the end of a note is the start of the next)
- search for exact match: with standard text searching algorithms: Knuth-Morris-Pratt, Boyer-Moore Themefinder (regular expression match) for Essen Folksong Database collection of European folk music available in quantized MIDI and kern**
- search for approximate match : main topic of lecture I
 with similarity measures : edit distances

 Musipedia (R. Typke)
- query by humming and by tapping MUSART, Musipedia (score bases) SoundHound (audio base)

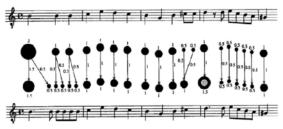
Symbolic Music Representations (polyphony)

Representations by points in a 2D space (polyphonic scores) document and queries are finite sets of events made of:

- onset time,
- pitch,
- duration.

Geometric Methods

- ▶ exact match: query ⊂ document (modulo pitch shift of query)
- → approximate match: document is superset of subset of the query PROMS (M. Clausen, R. Engelbrecht, D. Meyer, and J. Schmitz)
- set comparison using transportation distances (EMD) for comparing sets



• • • • •

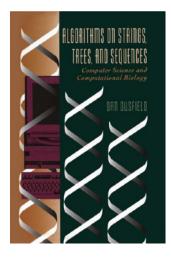
Approximate String Matching

Edit-Distance Computation

measuring the similarity of sequences of symbols applied to

- text processing
 - spell correction
 - · plagiarism detection
 - file diff
 (with variant: LCS)
- · approximate search in documents
- Information Extraction
 Named Entity Recognition and Entity Coreference
- Molecular Biology (DNA or protein sequences) sequence di-similarities reflect biological events (mutations...) sequence similarity implies functional or structural similarity
- Speech Recognition (with variant: Dynamic Time Wrapping)

Algorithms on sequences



Dan Gusfield

Algorithms on strings, trees and sequences Computer Science and Computer Biology Cambridge University Press

Chapters on Approximate String Matching

- algorithms
- · discussion on biological problems

In this presentation:

- insight of some algorithms in SRS settings
- · discussion on musical relevance & extensions

What is the difference between:

- 1. cat and cats
- 2. cat and cut
- 3. sunday and saturday
- 4. intention and execution
- 5. vintner and writers

What is the difference between:

- 1. cat and cats 1 letter
- 2. cat and cut
- 3. sunday and saturday
- 4. intention and execution
- 5. vintner and writers

hint: align the strings by padding with ${\scriptscriptstyle\perp}$ in order to minimize non-matching slots.

1. cat

What is the difference between:

- 1. cat and cats 1 letter
- 2. cat and cut 1 letter
- 3. sunday and saturday
- 4. intention and execution
- 5. vintner and writers

hint: align the strings by padding with $_{\perp}$ in order to minimize non-matching slots.

1. Cat. 2. Ca

What is the difference between:

- 1. cat and cats 1 letter
- cat and cut
 sunday and saturday
 sunday and saturday
- 3. sunday and saturday4. intention and execution
- 4. intention and execution
- 5. vintner and writers

hint: align the strings by padding with $_{\rm -}$ in order to minimize non-matching slots.

- 1. c a t s 2. c u t
- 3. s a t u r d a

What is the difference between:

- 1. cat and cats 1 letter
- 2. cat and cut 1 letter
- 3. sunday and saturday 3
- 4. intention and execution
- 5. vintner and writers

hint: align the strings by padding with $_{\rm -}$ in order to minimize non-matching slots.

- 1. c a t s 2. c a c u
- 3. s - u n d a y s a t u r d a y
- 4. in te_n tion
 - $_{-}$ e $_{\mathbf{X}}$ e $_{\mathbf{C}}$ $_{\mathbf{u}}$ t $_{\mathbf{i}}$ o $_{\mathbf{n}}$

```
What is the difference between:
      cat and cats
                                   1 letter
 1.
                                   1 letter
 2.
      cat and cut
 3.
      sunday and saturday
 4.
      intention and execution
                                   5
      vintner and writers
hint: align the strings by padding with _
in order to minimize non-matching slots.
1.
    С
                                     u
                u
3.
              u r
                        d
                        n
4.
                                i
                е
                    С
                        u
                                    0
                                        n
                n
                        n
5.
```

Edition Primitives

Edition Rules

The SRS \mathcal{R}_0 over a finite alphabet Σ is defined as

$$\begin{array}{lll} \mathcal{R}_0 & = & \{\varepsilon \to b \mid b \in \Sigma\} & \text{Insertion} \\ & \cup & \{a \to \varepsilon \mid a \in \Sigma\} & \text{Deletion} \\ & \cup & \{a \to b \mid a, b \in \Sigma, a \neq b\} & \text{Replacement} \end{array}$$

Rewriting step $(u, v \in \Sigma^*)$:

$$\begin{array}{cccc} u\,v & \xrightarrow[{\mathcal R}_0]{} & u\,b\,v & \text{Insertion} \\ u\,a\,v & \xrightarrow[{\mathcal R}_0]{} & u\,v & \text{Deletion} \\ u\,a\,v & \xrightarrow[{\mathcal R}_0]{} & u\,b\,v & \text{Replacement} \end{array}$$

 \mathcal{R}_0 is equivalent to the following TRS over $\Sigma \uplus \{\bot\}$ (symbols of Σ are unary, \bot constant):

$$\begin{array}{lll} \mathcal{R}_0 & = & \{ \ x \rightarrow b(x) \mid b \in \Sigma \} & \text{Insertion} \\ & \cup & \{ a(x) \rightarrow x \mid a \in \Sigma \} & \text{Deletion} \\ & \cup & \{ a(x) \rightarrow b(x) \mid a, b \in \Sigma, a \neq b \} & \text{Replacement} \end{array}$$

Edit Distance

Rewriting problem:

reachability: given
$$s,t \in \Sigma^*$$
 does it hold that $s \xrightarrow{*} t$?

It is true for any s,t with \mathcal{R}_0 , because of rules Insertion and Deletion!

Quantitative Rewriting problem:

```
quantitative given s,t \in \Sigma^* reachability: what is the minimal length of a rewrite sequence s \xrightarrow{*} t?
```

= how much 2 strings differ = edit-distance.

Edit Distance

For $s,t\in \Sigma^*$, the Levenshtein distance LD(s,t) is the minimal length of a rewrite sequence $s\xrightarrow[\mathcal{R}_0]{*}t$.

Edit Distance problem:

given
$$s,t\in \Sigma^*$$
 compute $LD(s,t)$ along with a minimal $s\xrightarrow[\mathcal{R}_0]{} t$.

Example: LD(vintner, writers) = 5

$$\begin{array}{ccc} & \text{vintner} & \frac{R}{\mathcal{R}_0} \text{)} & \text{wintner} & \frac{I}{\mathcal{R}_0} \text{)} & \text{writner} \\ & \frac{D}{\mathcal{R}_0} \text{)} & \text{writer} & \frac{I}{\mathcal{R}_0} \text{)} & \text{writers} \end{array}$$

Is this sequence minimal?

Alignment

We denote by Σ_{-} the extension of a finite alphabet Σ with a new *space symbol* $_{-}\notin\Sigma.$

Alignment

A pair $\langle s',t'\rangle$ of strings over Σ_- is an alignment of the pair $\langle s,t\rangle$ of strings over Σ if s', t' are obtained respectively from s and t by insertion of space symbols _ such that

- ullet s' and t' have the same length,
- ullet no position is labelled $\underline{\ }$ in both s' and t'.

```
Example: s' = \mathbf{v} _ i n t n e r _ t' = \mathbf{w} r i _ t _ e r s
```

Alignements & Rewriting

Observation 1.

Every alignment of $\langle s, t \rangle$ defines exactly one rewrite sequence $s \xrightarrow[\mathcal{R}_0]{*} t$.

Example:

Converse?

Alignements & Rewriting

Non-overlapping rewriting sequence (left-right strategy):

where $\ell \to r$ is a string rewriting rule $(\ell, r \in \Sigma^*)$, and $u, v_1, v_2 \in \Sigma^*$.

Observation 1'.

Every **non-overlapping** rewrite sequence $s\xrightarrow[\mathcal{R}_0]{*} t$ defines exactly one alignment of $\langle s,t \rangle$, and vice-versa.

- insert _ in s' at positions of Insertion,
- insert $_{-}$ in t' at positions of Deletion.

The converse also holds: Consider the pairs of letters from left-to-right.

Brute Force

Observation 2.

Every rewrite sequence $s \xrightarrow[\mathcal{R}_0]{*} t$ of minimal length has no overlap.

Every 2 overlapping rewrite steps with \mathcal{R}_0 can be converted into strictly less rewrite steps (remember that \mathcal{R}_0 is "complete").

$uav \xrightarrow{R} ubv \xrightarrow{R} ucv$	$uav \xrightarrow{R} ucv \text{ if } a \neq c$
$uav \xrightarrow{R} ubv \xrightarrow{R} uav$	$uav \xrightarrow{0} uav$
$uv \xrightarrow{\mathbb{R}_0} ubv \xrightarrow{\mathbb{R}} ucv$	$uv \xrightarrow{1} ucv$
$uav \xrightarrow{R} ubv \xrightarrow{D} uv$	$uav \xrightarrow{D} uv$
$uv \xrightarrow{\Gamma} ubv \xrightarrow{D} uv$	$uv \xrightarrow{0} uv$

Hence, in order to compute LD(s,t), we can explore all alignments of $\langle s,t\rangle$ and find the best one.

But the number of alignements is exponential in the lengths of s and t.

Better solution: think recursively.

Let $s = a_1 \dots a_m$ and $t = b_1 \dots b_n$ in Σ^* .

For $1 \leq i \leq m$, $1 \leq j \leq n$, let $d_{i,j} = LD(a_1 \dots a_i, b_1 \dots b_j)$. In particular, $d_{m,n} = LD(s,t)$.

$$d_{0,0} = 0$$

For $0 \leq i \leq m$, $0 \leq j \leq n$, let σ be the rewrite sequence $a_1 \dots a_i \xrightarrow[\mathcal{R}_0]{*} b_1 \dots b_j$ of minimal length (its length is $d_{i,j}$).

By Observation 2, we can assume that σ has no overlaps, and commute its rewrite steps so that they are applied from left to right.

We consider the last (*i.e.* rightmost) rewrite step of σ .

There are 4 cases.

There are 4 cases for the last (i.e. rightmost) rewrite step of σ :

1. Replacement $a_i \xrightarrow{\mathcal{R}_0} b_j \ (a_i \neq b_j)$ Then $d_{i,j} =$

- 1. Replacement $a_i \xrightarrow[\mathcal{R}_0]{} b_j \ (a_i \neq b_j)$ Then $d_{i,j} = d_{i-1,j-1} + 1$.
- 2. Insertion $\varepsilon \xrightarrow{\mathcal{R}_0} b_j$

- 1. Replacement $a_i \xrightarrow[\mathcal{R}_0]{} b_j \ (a_i \neq b_j)$ Then $d_{i,j} = d_{i-1,j-1} + 1$.
- 2. Insertion $\varepsilon \xrightarrow{\mathcal{R}_0} b_j$ Then $d_{i,j} = d_{i,j-1} + 1$.
- 3. Deletion $a_i \xrightarrow{\mathcal{R}_0} \varepsilon$

- 1. Replacement $a_i \xrightarrow[\mathcal{R}_0]{} b_j \ (a_i \neq b_j)$ Then $d_{i,j} = d_{i-1,j-1} + 1$.
- 2. Insertion $\varepsilon \xrightarrow{\mathcal{R}_0} b_j$ Then $d_{i,j} = d_{i,j-1} + 1$.
- 3. Deletion $a_i \xrightarrow{\mathcal{R}_0} \varepsilon$ Then $d_{i,j} = d_{i-1,j} + 1$.

- 1. Replacement $a_i \xrightarrow[\mathcal{R}_0]{} b_j \ (a_i \neq b_j)$ Then $d_{i,j} = d_{i-1,j-1} + 1$.
- 2. Insertion $\varepsilon \xrightarrow{\mathcal{R}_0} b_j$ Then $d_{i,j} = d_{i,j-1} + 1$.
- 3. Deletion $a_i \xrightarrow{\mathcal{R}_0} \varepsilon$ Then $d_{i,j} = d_{i-1,j} + 1$.
- 4. $a_i = b_j$. Then $d_{i,j} = d_{i-1,j-1}$.

Summary:

$$d_{0,0} = 0$$

$$d_{i,j} = \min \left\{ \begin{array}{l} d_{i-1,j-1} + 1 & | & a_i \neq b_j \\ d_{i,j-1} + 1 & | & a_i \neq b_j \\ d_{i-1,j} + 1 & | & d_{i-1,j-1} & | & a_i = b_j \end{array} \right\}$$

We can implement the function d using these equation and call d(m,n).

This top-down approach is very inefficient because of redundant recursive calls.

Better solution: tabulation (bottom-up approach):

fill a $m \times n$ matrix with the values of d(i, j), starting with the upper left corner d(0, 0).

An optimal rewrite sequence can be computed simultaneously, or by traceback.

Time complexity: O(m.n)

Space complexity: O(m.n)

Optimization:

when it is not required to compute an optimal rewrite sequence:

Time complexity: $O(LD(s,t).\min(m,n))$

Space complexity: $O(\min(LD(s,t),m,n))$

Traceback

			W	r	i	t	е	r	s
		0	1	2	3	4	5	6	7
	0	0	1	2	3	4	5	6	7
v	1	1	1	2	3	4	5	5	6
i	2	2	2	2	2	3	4	5	6
n	3	3	3	3	3	3	4	5	6
t	4	4	4	4	4	3	4	5	6
n	5	5	5	5	5	4	4	5	6
е	6	6	6	6	6	5	4	5	6
r	7	7	7	7	7	6	5	4	5

e' = v inthe

according to the operation(s) selected in min: - right for insertion - down for deletion - diagonal for replace or match. following a path acc. to these directions from (0,0) to (m, n) permit to reconstruct a rewrite

sequence. in time O(m+n).

traceback: we compute the matrix and in the same time add pointers

Dynamic Programming

In general, the Dynamic Programming techniques consist in:

- divide the problem into subproblems defining a recurrence relation
- store the computed values in a table.

Weighted Frameworks

We can be more general:

every rule $\ell \to r$ of \mathcal{R}_0 is associated a non-zero weight value $\delta(\ell \to r)$.

(WSRS)

Quantitative Rewriting problem:

quantitative given $s, t \in \Sigma^*$ reachability: what is the minimal weight of a rewrite sequence $s \stackrel{*}{\longrightarrow} t$?

For more generality, weights could be defined in a semiring.

Mehryar Mohri

Semiring frameworks and algorithms for shortest-distance problems Journal of Automata, Languages and Combinatorics 7(3) 2002

Distance with costs

Computation of D(s,t): The equations become:

$$d_{0,0} = 0$$

$$d_{i,j} = \min \left\{ \begin{array}{l} d_{i-1,j-1} + \delta(a_i \to b_j) & | \quad a_i \neq b_j \\ d_{i,j-1} + \delta(\varepsilon \to b_j) & | \quad d_{i-1,j} + \delta(a_i \to \varepsilon) \\ d_{i-1,j-1} & | \quad a_i = b_j \end{array} \right\}$$

It is correct provided that triangle inequality holds (to avoid overlaps):

$$\delta(\ell \to s) \le \delta(\ell \to r) + \delta(r \to s)$$

Melodic Similarity

Melodic Similarity

Levenshtein Edit Distance (minimal number of rewrite rules used to transform a string into another)

is relevant for

- · text processing (spell correction...), and
- · biological sequence comparison.
- · For music analysis?

(monophonic) melody = sequence of symbols (with pitch, duration)

When computing melodic similarity as an edit-distance, it is important to consider duration-preserving rewrite rules → problem with insertion and deletion.

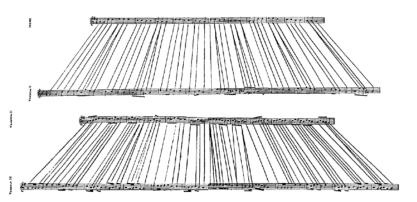
rhythm is defined by regular patterns (meter) meter should be preserved.

e.g.: what happens if one adds a random beat in a waltz?

Mongeau-Sankoff Distance

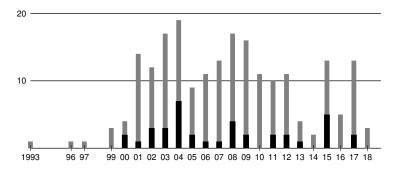
Marcel Mongeau and David Sankoff Comparison of musical sequences Computers and the Humanities, 24(3):161–175, 1990

inspired by the notion of theme and variations (= rewritings of theme)



Comparison of musical sequences

Marcel Mongeau and David Sankoff Comparison of musical sequences Computers and the Humanities, 24(3):161–175, 1990



 ${\it Citations~of~the~Mongeau-Sankoff~algorithm~throughout~the~years~(data~from~semanticscholar)}$

Black bars represent papers presented at ISMIR (International Society for Music Information Retrieval Conference)

Extended Edit Distance

Esko Ukkonen Algorithms for Approximate String Matching Information and Control (64), 1985

Let $\mathcal R$ be an arbitrary SRS over $\Sigma=$ finite set of string rewriting rules of the from $\ell \to r$ with $\ell, r \in \Sigma^*$, $\ell \ne r$ (called *editing operation set* in [Ukkonen 85]).

Every rule $\ell \to r \in \mathcal{R}$ is associated a weight value $\delta(\ell \to r) > 0$.

Edit Distance

For $s,t\in\Sigma^*$, $D_{\mathcal{R}}(s,t)$ is the minimal weight of a rewrite sequence $s\xrightarrow{*}t$; by convention, $D_{\mathcal{R}}(s,t)=+\infty$ if there is no such sequence.

Extended Edit Distance

Let $s=a_1\dots a_m$ and $t=b_1\dots b_n$ in Σ^* , and, for $1\leq i\leq m$, $1\leq j\leq n$

$$d_{0,0} = 0$$

$$d_{i,j} = \min \left\{ \begin{array}{cccc} d_{i-1,j-1} & | & a_i = b_j \\ d_{i-p,j-q} + \delta(\ell \to r) & | & 0 \le p \le i \\ & | & 0 \le q \le j \\ & | & \ell = a_{i-p+1} \dots a_i \\ & | & r = b_{j-q+1} \dots b_j \\ & | & \ell \to r \in \mathcal{R} \end{array} \right\}$$

Does d(i,j) compute $D(a_1 \ldots a_i, b_1 \ldots b_j)$?

Restricted Edit Distance

Restricted Edit Distance

For $s,t\in\Sigma^*$, $D_{\mathcal{R}}'(s,t)$ is the minimal weight of a non-overlapping rewrite sequence $s\xrightarrow{*}\mathcal{R}$ t; by convention, $D_{\mathcal{R}}'(s,t)=+\infty$ if there is no such sequence.

Fact 1.

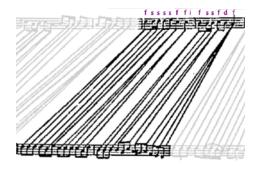
For all $s, t \in \Sigma^*$, $D_{\mathcal{R}}(s, t) \leq D'_{\mathcal{R}}(s, t)$.

It can be < (in cases of overlap, examples later)

Fact 2.

For $s=a_1\ldots a_m$ and $t=b_1\ldots b_n$ in Σ^* , $1\leq i\leq m$, $1\leq j\leq n$, $d_{i,j}=D_{\mathcal{R}}'(a_1\ldots a_i,b_1\ldots b_j).$

Example Variations K. 265



Alignments between variations 3 and 7 by M. Duchesnes on Mozart's *Ah vous dirai-je maman* K. 265 (figure from the original article of Montgeau & Sankoff 1990)

Variation 3 is a ternary meter and variation 7 in a binary one, making note-by-note alignment difficult, some steps rewrite one note into several.

Mongeau-Sankoff Edit Distance

They consider SRS with rules of the following forms:

deletion is a fragmentation with q=0 insertion is a consolidation with p=0 replacement is a fragmentation with q=1 (or consolidation with p=1)

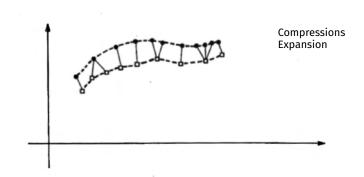
Mongeau-Sankoff Edit Distance

In this case the algorithm computing $D_{\mathcal{R}}'$ is:

$$d_{0,0} = 0$$

$$d_{i,j} = \min \begin{cases} d_{i-1,j-1} + \delta(a_i \to b_j) & | a_i \neq b_j \\ d_{i-1,j} + \delta(a_i \to \varepsilon) & | \\ d_{i,j-1} + \delta(\varepsilon \to b_j) & | \\ d_{i-1,j-1} & | a_i = b_j \\ d_{i-1,j-k} + \delta(a_i \to b_{j-k+1} \dots b_j) & | 2 \le k \le j \\ d_{i-\ell,j-1} + \delta(a_{i-\ell+1} \dots a_i \to b_j) & | 2 \le \ell \le i \end{cases}$$

Discrete Time Wrapping



Joseph B. Kruskal & Mark Libermann
The Symmetric Time-Warping Problem: from Continuous to Discrete
Time Warps, String Edits, and Macromolecules
The Theory and Practice of Sequence Comparison, CSLI Stanford 1999

Montgeau-Sankoff Edit Distance

elementary edit operations:

deletion, insertion, substitution +

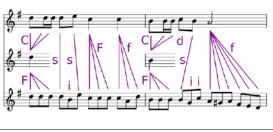
- consolidation with cost = compress substring → single char
- fragmentation $id = expanse char \rightarrow substring$

Example Variations K.265 (2)

Alignments between variations 3 and 7 by M. Duchesnes on Mozart's Ah vous dirai-je maman K. 265

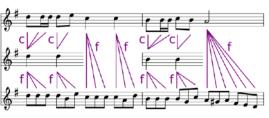
Rewrite sequences with overlaps.

All considered consolidations and fragmentations preserve the total duration.



2 strict consolidation, 3 strict fragmentations, 3 other fragmentations, 6 s/d/i rules total cost = 14 + 3.w_{dur}.

This rewrite sequence involves



Here the rewrite sequence contains only consolidations and fragmentations (11 rules, including 5 strict ones).

Mongeau-Sankoff Edit Distance

Mongeau-Sankoff Edit Distance

Fact

In general it is undecidable whether $D_{\mathcal{R}}(s,t)<+\infty$ given $s,t\in\Sigma^*$ and \mathcal{R} over Σ with fragmentations and consolidations.

Encoding of the blank accepting problem for a Turing machine \mathcal{M} .

Every transition of ${\cal M}$ is simulated by a combination of consolidation and fragmentation, or insertion, deletion.

Computable cases

 $D_{\mathcal{R}}(s,t)$ can be computed in some specific cases:

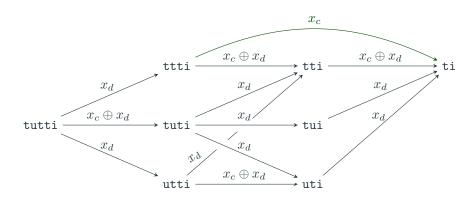
- 1. when $\mathcal{R} = \mathcal{R}_0$
- 2. when ${\mathcal R}$ contains only consolidations and deletions
- 3. when ${\mathcal R}$ contains only fragmentations and insertions
- 1. $D_{\mathcal{R}_0} = D'_{\mathcal{R}_0}$ with triangle inequality.
- 2. PTIME construction of a weighted automaton $\mathcal{A}_s^{\mathcal{R}}$ such that $\mathcal{A}_s^{\mathcal{R}}(t) = D_{\mathcal{R}}(s,t).$
- 3. inverse rules

Weighted Automata Construction: Example

$$\Sigma = \{ \mathtt{i}, \mathtt{t}, \mathtt{u} \}$$

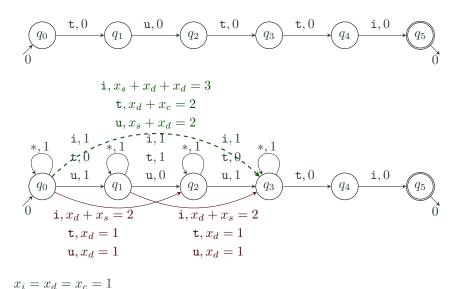
all replacements,
all insertions,
all deletions,
some consolidation and fragmentations.

Weighted Automata Construction: Example



Rewrite sub-graph of tutti (only deletion and consolidation steps)

Weighted Automata Construction: Example



Mongeau-Sankoff Edit Distance

summary:

- sequential representation of monophonic melodies computation of similarity
- Levenstein edit distance: efficient computation but problem of relevance for melodic similarity
- Montgeau & Sankoff extension: relevant musically (principle of theme - variation) algorithm for computing alignments only distance not computable particular cases computable

diff tool for the comparison

of Music Score Files

side-by-side comparison of 2 text files

- identify differences
- save in patch
- merge files

used in

- software development
- collaborative edition
- version control systems (git merge...)

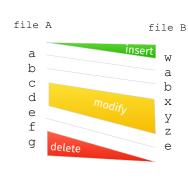


Sublimemerge 2 for macOS

Longest Common Subsequence

used for diff of text files

informal objective: given 2 text files (typically 2 versions of the same file) identify the lines in common and the lines that differ



Let $L_{i,j}$ be the longest subsequence common to the first i lines of file $A=A_1,\ldots,A_m$ and the first j lines of file $B=B_1,\ldots,B_n$.

$$\forall i = 0,...m$$
 $L_{i,0} = 0$
 $\forall j = 0,...n$ $L_{0,j} = 0$

$$\forall i = 1,...m, \forall j = 1,...n$$
 $L_{i,j} = 1 + L_{i-1,j-1} \text{ if } A_i = B_i$

 $L_{i,j} = \max(L_{i-1,j}, L_{i,j-1})$ otherwise

XML score files

for data exchange


```
measure number="1">
 attributes.
   _divisions\8/divisions\
   <kev>
     cfifths -1c/fifths
   </kev>
     <heats>2</heats>
     <br/><beat-type>4</beat-type>
   <staves>1</staves>
   <clef number="1">
     <siqn>G</siqn>
     line>2</line>
     <clef-octave-change>0</clef-octave-change>
   </clef>
 </attributes>
  <note>
   <nitch>
        <sten>C</sten>
        <octave>5</octave>
   </nitch>
   <duration>6</duration>
   <voice>1</voice>
   <type>eighth</type>
   <dot/>
   <stem>down</stem>
   <notations/>
 <note/>
```

```
<measure n="1" xml:id="m sc 2" left="invis">
<staff n="1">
  <layer n="1">
     <heam>
      <note xml:id="n sc 6 0" pname="c" oct="5" dur="8" dots="1"/>
      <note xml:id="n sc 7 0" pngme="d" oct="5" dur="32"/>
      <note xml:id="n_sc_8_0" pname="c" oct="5" dur="32"/>
     </heam>
     <heam>
       <note xml:id="n_sc_9_0" pname="c" oct="5" dur="8"/>
       <note xml:id="n_sc_10_0" pname="c" oct="5" dur="8"/>
     </heam>
  </laver>
</staff>
</measure>
<measure n="2" xml:id="m sc 11">
<staff n="1">
   <layer n="1">
     <heam>
      <note xml:id="n_sc_12_0" pname="c" oct="5" dur="16"/>
      <note xml:id="n_sc_13_0" pname="f" oct="5" dur="16"/>
     </heam>
      <note xml:id="n_sc_14_0" pname="f" oct="5" dur="4"/>
      <rest xml:id="n sc 15 0" dur="16"/>
      <note xml:id="n_sc_16_0" pname="f" oct="5" dur="16"/>
  </laver>
</staff>
</measure>
```

MusicXML (Finale) (1 note) MEI (Verovio)
(2 bars)

Score diff

XML formats for music score encoding are

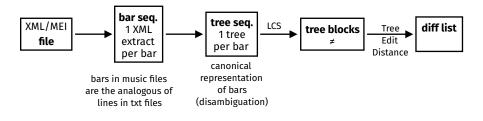
- expressive
- verbose and ambiguous:

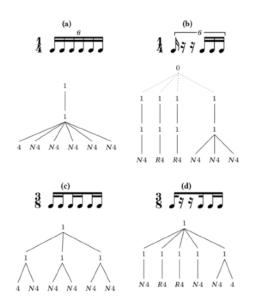
The same score can have many different XML encodings.

csq: it won't help to apply Unix diff directly to the XML (text) file

Christopher Antila, Jeffrey Treviño, Gabriel Weaver A hierarchic diff algorithm for collaborative music document editing TENOR 2017 Francesco Foscarin (PhD) A diff Procedure for XML/MEI Music Score Files

score file comparison proceeds in 2 steps (after some pre-processing)





intermediate representation of the graphical content of a score with trees.

for disambiguation

It is a canonical representation:

2 different XML encodings of the same score elements will have the same tree representation.

Tree Edit Distance

edit primitives (on trees) ≠ term rewrite rules

where a(u), a'(u') are trees, s, s', u, u' are sequences of trees ε is the empty sequence, and

$$\delta(a,a)=0$$

$$\delta(a,a')=1 \ {\rm if} \ a\neq a' \ {\rm are \ inner \ symbols}$$

$$\delta(a,a')=dist(a,a') \ {\rm if} \ a,a' \ {\rm are \ constant \ symbols}.$$

Kaizhong Zhang and Dennis Shasha Simple fast algorithms for the editing distance between trees

Rameau Corpus

Evaluation of XML-MEI music score files diff tool on a dataset produced by IReMus (Sorbonne U. CNRS) from a corpus of Bibliothèque nationale de France BnF, Gallica containing 21 ouvertures of Jean-Philippe Rameau.

We diff one page OMRized from the manuscripts, and its manual correction. Displayed differences can be useful for a fine detection of OMR errors.

(*) OMR = Optical Music Recognition = Music OCR

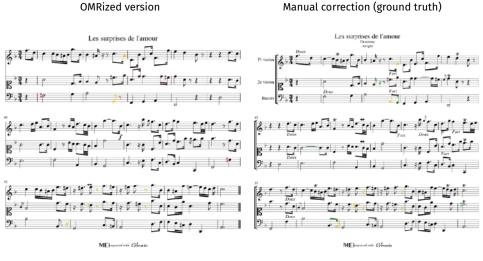
project Gioqoso between Vertigo team (CNAM, Cedric) IReMus (Sorbonne U. CNRS) IRISA (Rennes) BnF (French national library)

copyright

(BnF Gallica

https://gallica.bnf.fr

Rameau Corpus



diff marks:

- insertiondeletion
- replacement (modification)

Summary of part I

- sequential representations of monophonic melodies for symbolic music analysis (musicology)
- Levenshtein Edit Distance defined in SRS settings (rules insert, delete, replace) quantitative reachability efficient computation with Dynamic Programming
- Extension by Mongeau & Sankoff Melodic Similarity (rules fragmentation, consolidation) notion of overlaps
- diff utility for Score File Longest Common Subsequence computation Tree Edit Distance ≠ Term Rewriting
- structured representations of music music notation processing (next lecture)
- high-level (musicological) features for audio Music Information Retrieval (long term perspective in MIR community)

audio engineering community:
« perceived musical information which,
though its existence is agreed by listeners,
stubbornly refuses to be extracted
from audio signals in isolation »

("glass ceiling" at about 70% accuracy in the results achieved by audio processing alone)

Visualization

Mozart, Symphony No. 40 in G minor, 2nd mvt., Andante

https://youtu.be/14YKwZ5yYxw youtube channel smalin

